Indoor Navigation System using Range
Imaging and V-SLAM

A project report submitted in partial fulfilment of the requirements for the
degree of

Bachelor of Engineering
By
Yash Turkar (Roll No. 7977)
Yashom Dighe (Roll No. 7928)

Under the guidance of
Prof. Sunil Surve
Prof. B. K. Mohan (CSRE, IITB)
Dr. Yogesh Agarwadkar (InfiCorridor Solutions Pvt. Ltd.)

[ —— NGINEERS o o CANBUIL,
S Wy 0CF D .
b - THE NATION

MouLDING

DEPARTMENT OF COMPUTER ENGINEERING

Fr. Conceicao Rodrigues College of Engineering, Bandra (W), Mumbai —400050
University of Mumbai

Year: 2019-2020



CERTIFICATE

This is to certify that the following students working on the project “Indoor Navigation System
using Range Imaging and V-SLAM” have satisfactorily completed the requirements of the
project in partial fulfilment of the course B.E in Computer Engineering of the University of
Mumbai during academic year 2019-2020 under the guidance of Prof. Sunil Surve (Ph.D.).

Submitted By:
Yash Turkar (7977)
Yashom Dighe (7928)
Prof. Sunil Surve Prof. B. S. Daga
Guide Head of the Department

Principal



PROJECT REPORT APPROVAL FOR B.E

This is to certify that the project synopsis entitled “Indoor Navigation System using Range
Imaging and V-SLAM?” submitted by the following students is found to be satisfactory and
the report has been approved as it satisfies the academic requirements in respect of Major
Project - I work prescribed for the course.

Yash Turkar (7977)
Yashom Dighe (7928)

Internal Examiner

(Signature)
Name:

Date:

Seal of the Institute

External Examiner

(Signature)
Name:

Date:



DECLARATION OF THE STUDENT

We declare that we have adhered to all principles of academic honesty and integrity and have
not misrepresented or fabricated or falsified any idea / data / fact / source in my submission.

We also declare that this written submission represents our ideas in our own words and where
other's ideas or words have been included, we have adequately cited and referenced the original
sources.

We understand that any violation of the above will be cause for disciplinary action by the
Institute and can also evoke penal action from the sources which have thus not been properly
cited or from whom proper permission has not been taken when needed.

Signature of the student

Yash Turkar (7977)

Signature of the student

Yashom Dighe (7928)

Date: April 2020



ACKNOWLEDGEMENT

We would like to thank our institute Fr. Conceicao Rodrigues College of Engineering for access
to the laboratory equipment and InfiCorridor Solutions Pvt. Ltd. for sponsoring the project. We
are grateful to Prof. B. K. Mohan of Centre of Studies in Resources Engineering, IIT Bombay
for his guidance in image processing techniques. Finally, we thank Mr. Christo Aluckal for
helping us digitise all our figures and diagrams.



ABSTRACT

Unmanned aerial and ground vehicles (UAVs and UGVs) today excel at autonomous navigation
due to their reliance on GNSS sensors. GNSS sensors are an unviable option for navigation in
indoor environments due to lack of direct line-of-sight with satellites and lack of environmental
awareness. This project proposes an integrated solution for localisation of the vehicle in an
indoor environment, path planning and obstacle avoidance. The proposed system uses range
imaging sensors for depth estimation and visual odometry (visual simultaneous localisation and
mapping) for pose estimation. Simulations show that the proposed system can be used in a
complex indoor environment with optimal lighting conditions and low to medium clutter of
obstacles.

Vi



GLOSSARY

GNSS Global Navigation Satellite System
GPS Global Positioning System
VSLAM Visual Simultaneous Localization and Mapping
ROS Robot Operating System

WPS Wi-Fi Positioning System

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle
LIDAR Light Detection and Ranging

GTG Go to Goal

FSM Finite State machine

CC Counter Clockwise

Cw Clockwise

AO Avoid Obstacle
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1. INTRODUCTION

Unmanned Autonomous Vehicles or mobile robots, also known as UAVs (Unmanned Aerial
Vehicles) and UGVs (Unmanned Ground Vehicles) are highly effective for a multitude of
applications. They are extremely customizable and can be designed to carry various payloads
such as cameras, LIDAR sensors and a variety of other sensors (optical, thermal, multispectral
and hyper-spectral imaging sensors). This results in these robots having applications in various
fields like surveying, agriculture, archaeology, emergency response and disaster management,
mapping and reconstruction, civil and military reconnaissance to name a few. The ability to
carry payloads and cover large distances makes them ideal for cargo delivery in remote places
which are difficult to reach and time consuming to access by roads e.g. to deliver medicines
and vaccines to doctors in remote locations.

Due to their reliance on Global Navigation Satellite System (GNSS) sensors (GPS, GLONASS,
etc.) for localisation, these robots perform excellently in outdoor environments. GNSS satellites
broadcast their location and GNSS sensors use these broadcasted signals to triangulate their
own location w.r.t to the GNSS satellites. Hence, direct line-of-sight is required for GNSS to
operate reliably. Satellite imaging also provides a perfectly accurate and detailed representation
of the earth thus providing the data required (road maps and locations) for navigation which is
in turn used by these robots to localise themselves in their environment/s.

Localisation in indoor environments is much more challenging because of high complexity of
obstacles and clutter. Lack of line-of-sight prevents GNSS to provide reliable information for
the vehicle to localise itself, GNSS also fails to provide any details of possible obstacles in the
environment. Although previous approaches to develop a robust indoor navigation system such
as ultrasonic beacons (SEKI et al. 1998), WPS (Wi-Fi Position System) (PARK 2014),
Bluetooth based approaches (SATAN 2018), etc. exist, all of them require specialised hardware
to be setup in the indoor environment and hence are not dynamic in nature and cannot be used
in unexplored areas. Moreover, they need to communicate with a base station which makes
them unusable in remote inaccessible areas, areas such as mines or caves.

Micro UAVs and UGVs have potential in indoor applications such as but not limited to survey
operations in dangerous environments and structural analysis. To achieve localisation in indoor
environments a reliable and robust navigation technique is required, which does not rely on
GNSS or any other beacon based system (WPS, Ultrasonic beacons); a system that is self-
sufficient, dynamic and robust enough to be deployed in real-life scenarios with minimal setup
and no prior knowledge of the indoor environment.

The proposed system uses depth data from range imaging sensors and pose data from visual
odometry sensors (V-SLAM sensor) and generates pointset which can be easily referenced later.
The system considers possible obstacles in the environment and can operate in complete
isolation, i.e. without communication with a base station. The system proposed is lightweight
and simple, making it ideal to be run on-board the vehicle using minimal computing power.
This makes the system completely independent and highly dynamic as no setup is required prior
to operation.



2. LITERATURE REVIEW

2.1 Key Outcomes of Literature Review

There are several ways to localize and navigate an environment. GNSS receivers being the most
popular method of localization. GNSS receivers use satellite communication to estimate their
location. The navigation task performed by GNSS receiver in outdoor environments is well
known. The searching in two domains, frequency and time, brings estimates in the Doppler
frequency and code delay. In case of clear visibility there are several strong satellite signals
present and the tasks of acquisition, tracking, and position computation are relatively easy.
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Figure I - GNSS in Indoor Environment (PURICER, KOVAR 2007)

The other situation is for the case of user receiver location in difficult environment, i.e. urban
canyon or indoors. The signals coming from the satellites are obstructed by foliage, walls, and
other structures (Fig. 1). The signal that can be used by the user receiver in such environment
is mostly consisted of strongly attenuated direct signal and reflected (and/or scattered) signals
coming usually by path of the least resistance. That is why two main phenomena, which indoor
receiver must count with, are signal attenuation and multipath effect. (PURICER, KOVAR
2007)

Due to these challenges in using GNSS in indoor environments, other methods have been
explored. Use of beacons has been widely adopted for indoor localization, beacons can be based
on ultrasound (SEKI et al. 1998), Wi-Fi (PARK 2014) or Bluetooth (SATAN 2018) protocols.
Beacon based localization systems are used in known environments, beacons use triangulation
techniques to help the robot localize in the environment.
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2.2 Research Gap

Most indoor navigation systems rely on beacons or external systems to localize a robot in an
environment. Hence, these systems cannot be used in unknown or unexplored environments.
These systems are also incapable of detecting and localizing obstacles in the environment as
they can only calculate the position of an active system such as a robot communicating with the
navigation beacons.

This generates a need to develop a system capable of localizing itself in an unknown and
unexplored environment. Such a system should be capable of mapping, exploring and
navigating an unknown indoor environment while avoiding obstacles.

2.3 Research Questions
This project aims to answer the following questions.

e What is the efficacy of developing a robust indoor navigation system using V-SLAM
and range imaging?

e What is the relative efficiency that can be achieved by such a system?

e What are the target areas of application?

e What are the constraints and limitations of such a system?



2.4 Objectives and Problem Statement

2.4.1 Objectives:

To assess the feasibility of developing a robust indoor navigation system using V-
SLAM and range imaging

To evaluate the efficiency of the proposed system

To discover optimum use environment based on performance

To pinpoint the limitations of the proposed system

2.4.2 Problem Statement:

“Exploring, mapping and navigating a complex indoor environment while avoiding obstacles
and optimizing path”

Localisation in indoor environment is a challenging task. Exploring, mapping and navigating

an indoor environment while avoiding obstacles in real time can be complicated. To efficiently
solve this problem and deal with complexity, the problem statement is broken down into sub-
problems. These sub-problems are solved discretely, the solutions are put together after unit
testing and the final method is optimized to run with minimal computing power. Figure 2 shows

the breakdown of the problem statement into sub-problems.
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3. CONCEPTUALIZATION OF PROBLEM

STATEMENT

3.1 Environment Mapping

a.

Data Normalisation — Data acquired from the range imaging sensor and the pose
estimation sensor needs to be normalised. The depth values per pixel provided
by the range imaging sensor proposed are the normal distance from the sensor
to the pixel. These need to be converted to radial values in door to generate the
point-set (2D map).

Storing Map — The generated map or point-set needs to be stored in a custom
data structure. This data structure needs to be lightweight, easy to manipulate
and robust. This can be challenging as a concurrent approach is required.
Plotting - The generated map or point-set needs to be plot so as to show and
verify the map in real time. This can be challenging as a concurrent approach is
required.

Optimisation — Redundancies in point-set generation can result in excess data.
Thresholding data and selective omission of areas is required for an optimised
output.

3.2 Exploration and Navigation

a.

Localisation — The system needs to be localised in its environment in order to
explore its surroundings. Localisation in terms of the exploratory coordinate
system (ECS) and w.r.t to its surroundings is merged to provide the system with
complete sense of its location and surroundings.
Traditionally localisation is achieved in an outdoor environment by using GNSS
sensors. GNSS sensors are limited to outdoor use as there are several problems
that make them unreliable for indoor operations.
ECSeNCS — The exploratory coordinate system (ECS) is the coordinate system
used when the system is exploring the environment. All the obstacles are stored
using the ECS and distances are saved w.r.t the ECS origin. When a robot needs
to navigate an explored environment, it may start from a different point in space,
taking a new origin and a new coordinate system, the navigational coordinate
system (NCS). In order to use the stored map (generated while exploration), ECS
origin needs to be mapped with NCS origin. Once that is achieved, all obstacles
can be avoided by the navigation algorithm.
Region Segmentation — Regions in an environment need to be segmented, i.e. in
one map, different rooms and areas need to be identified as different
mathematical constructs. Once these regions are segmented, path planning
algorithm can be applied, and waypoints can be generated.
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d. Waypoint Generation — Waypoints need to be generated in the workspace of the
robot such that they do not coincide with any known obstacles and are weighted
so as to make sure that the most optimum path is chosen every time.

e. Point Domain to Curve Domain - The 2D map that is generated while exploring
is a point-set i.e. it is a list of all points that define the boundaries of obstacles or
walls w.r.t to the origin in the ECS. Referring to this point-set while generating
a path to navigate is computationally and mathematically infeasible and
inefficient. This sequence of points needs to be converted to a mathematical
equation of a curve that contains most of those points. This has two major
difficulties.

There needs to be a method to determine if there are different sets of
points. This is a problem as while building the point-set there is no
distinction made between different objects. E.g. If a curve fitting method
is applied on a point-set of two walls that intersect at some angle, the
resulting curve is an arc that is defined by those points. Figure 3
illustrates this example. For an ideal output, the two walls need to be
treated as separate point-sets and curve fitting needs to be applied
individually

Actual Walls /
Desired Curves

Generated
Curve

Figure 3 — Non-ideal vs ideal curve fitting

Loss of detail - Curve fitting methods are approximations; they do not
generate curves that pass through all the points. While this can be
beneficial for dealing with noise in the sensor, it can eliminate details
that are provided by outliers. E.g. If there is a minor (1-2 inch)
irregularity in the wall (due to a decoration like a photo frame), a curve
fitting method will simply eliminate this irregularity and the resulting 2D
map will have a straight line. This loss of information could lead to a
collision.
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Figure 4 — Interdependencies

Figure 4 shows the interdependencies between the modules, APIs and platforms used for
implementation of the proposed system.

The proposed system was implemented using Intel RealSense sensors, sensors such as but not
limited to RealSense D435 and RealSense T265. To interface with the sensors, Intel’s
RealSense SDK was used along with a python wrapper. The algorithms used to explore, map
and navigate are implemented using python. To verify the working of the system, a simulation

platform consisting of ROS and Gazebo was used.
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4. PROPOSED METHODOLOGY

4.1. Environment Mapping

Initialize starting point
as origin of map

Retrieve composite
Data frame F

Exiract depih frame and
perform plane slicing

Calculate spherical
co-ordinates

Offset co-ordinates
if required

Plot map and append
1o data structure

Figure 5 — Mapping Algorithm Flowchart

The range imaging sensor outputs data in a pipeline of frames. Each frame provides an R, G, B

and depth value per pixel. Only one row in each depth frame is considered. Isolating and
9



extracting only one row results in construction of a 2D-map at that altitude. This isolation is
performed because the robot operates at a fixed altitude, making obstacles above and below the
chosen altitude irrelevant. This is referred to as plane slicing and is demonstrated in Figure 6.
The choice of row depends on the application and can be varied.

depth

depth

/ 7/ [¢)

/op View

depth

Figure 6 - Plane slicing

Figure 7 - Conversion to spherical

coordinate system

4.1.1. Pre-Processing

The range imaging sensor provides depth values normal to the plane of the sensor. These values
need to be converted to radial distance from the center of the sensor in order to convert spatial
data to a spherical coordinate system for generating a visual representation. This is achieved.
using basic Euclidean geometry and trigonometry

The sensor provides the normal distance d (refer Figure 7). By trigonometry, the radial distance
D is the normal distance d divided by the cosine of [1[]

D =d/cos@ (1)

The sensor has a horizontal resolution of n pixels. All these pixels have an associated distance
di, d2,ds.... dnand angles (1, [J2, [J3....[], made with the vertical axis, which are used to calculate
their respective radial distances D1, D2, Ds.... Dn. Thus, for every frame in the pipeline, the
radial distances are calculated for all pixels in the chosen row.

10



[, for every pixel is calculated using the horizontal field of view h¢,, of the sensor. The Ay,
which is a known value, is the angle between extreme pixels. The vertical axis is assumed to be
aligned with center pixel and bisects hf,,,. Counter-clockwise angles from the vertical axis to

the left extreme are positive whereas clockwise angles from the vertical axis to the right extreme

are negative. This makes the angle of the leftmost pixel to be (@) and the rightmost pixel to

be — (@) and that of the center pixel to be 0. Thus, by elementary mathematics the generalized

formula of [k for some k™ pixel is given by
h’ ov
b= () - 8
where, n is the frame width in pixels.
4.1.2 Proposed Method

The initial location of the robot is taken as the origin for the

map and the pose estimation sensor (visual odometry sensor). The pose estimation sensor
returns the current position of robot relative to this origin (initial location).

Once a frame has been retrieved, two operations are performed

1. Thresholding and Selective omission
2. Offsetting

Thresholding is the process of checking if the robot has translated or rotated in the 2D space
from its previous point of mapping and if the data in the current frame has been already mapped.
The motion of the robot is verified using the pose estimation sensor which is expected to have
an inertial measurement unit (IMU) that reports its attitude and position in the 3D-space relative
to the starting point. The existence of knowledge is verified by referring to the existing pointset.

If thresholding determines that the robot’s position or attitude has changed by a significant
margin and that the knowledge of pixels in current frame does not exist in the data structure,
spherical coordinates, as explained above, are calculated for those pixels. Here the thresholding
function also selectively omits the pixels that have already been mapped in the case of an overlap
as shown in Figure 8. Pixels between x2 and x3 are not processed again even though they are in
the field of view, as they were already considered and added to the map previously.

11



Figure 8 - Selective omission for rotation

After calculating the spherical coordinates of the pixels, they need to be offset because the range
imaging sensor always gives depth from its current position. Therefore, if the robot translates
or rotates, the radial distance or the angle with the vertical axis or both change relative to the
starting point.

This needs to be compensated for and is done using the IMU and position data from the pose
estimation sensor using standard homogenous translation and rotation matrices.

E.g. We create a translation matrix (Fig. 9)

1 0 0
0 1 0
posx posy 1

Figure 9 — Translation Matrix

After multiplication with current position matrix, we get the final coordinates of the points
relative to the starting point.

Once the final coordinates are calculated, they are added as per the required format to the
custom data structure and are plotted on the map using coordinate geometry for visual
representation and verification.

12



4.2 Exploration and Navigation

Behavior based robotics is an approach of robotics that utilizes some basic behaviors
programmed into the robots to react to their environment and solve problems within that
environment. Instead of responding as per some precalculated model of the world they operate
by reacting by combining or switching between behaviors or modes. The robots draw on their
internal knowledge and basic feature set in order to resolve problems in the world that they
operate in. These problems include “going to goal” or “avoiding obstacles”.

To navigate an indoor environment a robot needs 2 fundamental behaviours defined.
1. Go to Goal (GTG) — Drive the robot to the goal state
2. Avoid obstacles (AO) — Avoid slamming into things

The Control design task for both the behaviours is to pick a desired motion vector and set that
vector equal to the input u

The controllers for these behaviours are obtained using control theory and solving the dynamics
of the system.

Assuming that obstacles can be sensed and there is a way to specify goal state, GTG is
implemented by minimizing the error between the current state and the goal state as shown in
the Fig. 10. (State refers the position in this sense).

Figure 10 - e is the error between current state and goal state

In contrast AO is implemented by increasing or blowing up the error between the current state
and the position of the obstacle as shown in the Fig. 11

13



Figure 11 - e is the error between obstacle and current state

In order to combine these behaviours i.e. to reach a goal while avoiding obstacles a switching
logic is needed to appropriately blend the behaviour and get the desired output.

do § Dsufe

/"", \\
> N
T = UGTG T =1Up0
A p,

~ _

d() > Dsnf(: T E
Figure 12 - FSM of Basic Controller

Let x = ugrg and X = uy, signify the inputs corresponding to the behaviours GTG and AO
respectively. This means that these are two independent modes which we switch between.

Let d,be the distance from the obstacle and Dg,f. be the threshold for maintaining the safe
distance from an obstacle.

As implied by the state transition diagram (Fig. 12) we execute the GTG behaviour when we
are sufficiently away from the obstacle and execute the AO behaviour when we are close to the
object (close and far are defined by the Dg4r, parameter)

The € simply adds a tolerance to the distance as strict thresholds can lead to the Zeno’s paradox
issue due to infinite switching.

14



This model works when the obstacles are point objects but in the real world they are not. We
define 5 classes of obstacles in increasing complexity.

1. Point objects — These objects have no size and are simply points in the world

2. Circular objects — These are same as point objects and the above model works for them
perfectly

3. Convex objects — These obstacles are convex shapes (e.g. Rectangles)
4. Non-convex objects — Obstacles which are not convex in shape
5. Labyrinths — obstacles that are a combination of all the classes

The above-mentioned model works for class 1 and 2 but fails for the 3 classes. This is because
the model makes them switch infinitely without any exit condition. This is demonstrated in the
Fig. 13 below.

Figure 13 - Infinite switches without any exit conditions

The robot (shown by the blue dot) starts moving towards the goal (green dot). When it reaches
near the red rectangle (convex obstacle), it switches to AO behaviour and moves in the direction
away from the obstacle. When it is sufficiently far it executes GTG again and when it is near it
switches back to AO. This repeats until the point of collision of the and the goal are colinear
and results in the robot simply oscillating along that line. Something similar happens in case of
non-convex objects and labyrinths.

In order to overcome this issue, we define an “Induced State” called follow wall that is to be
executed that traces the boundary of an obstacle. Boundary refers to the boundary that is
generated by the Dgq, threshold. This implies that we trace the threshold distance.

Now to trace the threshold, we simply move in a direction perpendicular to the direction of AO
behaviour as shown in Fig. 14

15



r LAO

T UFPW

Figure 14 - Direction of FW is perpendicular to AO

Therefore, the input is,

0 1 —
Upw = @ [_1 0] Ugo = aR( n/z)qu

Where, R is the rotation matrix and « is a constant scalar. However, we are faced with another
dilemma. The obstacle boundary can be followed in clockwise as well as counter clockwise

. . . . T -7
direction meaning the angle of rotation can be S Oor—.

In order to decide which angle to choose from we take the help of the GTG vector. This can be
done by taking an inner product of the FW and GTG vectors for C and CC directions and
checking for the sign.

(Ugre, Ugw) > 0 = upy
(ugre, upw) >0 = ugy,

Where ( ) is the inner product operator. The final issue in this problem is to decide when to
stop following the wall and start moving to the goal i.e. recognising when do we have a clear
path to the goal. The final problem is solved by maintaining calculating “progress” which
simply means checking if the robot is closer to the goal now than when it started the FW
behaviour and introducing the idea of clear shot which means can the robot clearly go to the
goal directly. This idea of clear shot can be verified by checking the sign of inner product of
the AO and GTG vectors because a positive inner product implies an acute angle.

Combining all the above ideas yield the following Finite State Machine (Fig. 15)

16
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Figure 15 - State Transition Diagram for Behaviour Switching

Here, A denotes the threshold for safely avoiding the obstacles and d; := ||x — x, || is a reset
used to recording position at the time for state transition for progress checking.

This is a complete model for the navigation controller. This FSM is utilised to explore and then
negotiate the mapped environment as described in the follow sections.

4.2.1 Exploration

As defined, exploration is the process of navigating an unmapped world with the intention of
building a map for future references and optimized navigation. This is achieved by generating
arbitrary goal states near the current state of the robot using a semi-random generator. The goal
state generator is semi-random because it discards points whose vicinity has been already
covered in the map. The nearness is defined by the range of the depth sensor using for mapping.
Semi arbitrary generation of goal states ensures that the entire world will be mapped given
enough time.

4.2.2 Navigation

Navigation in a mapped environment utilises the above designed FSM to traverse a sequence
of goal states. This sequence is generated using some heuristic to make sure that it satisfies the
set condition for optimality.

17



4.2.3 ECS — NCS Mapping

———————

H S i
3 e
: NCS Crigin/
i Origin bl
L ° —

Figure 16 - ECS — NCS Mapping (a,b,c)

As listed under challenges, the first step of navigation is for the robot to localise itself in the 2D
map once it starts i.e. to map this starting point(origin) to the origin of the ECS and shift the
entire map from ECS to the NCS. In order to achieve this, visual beacons can be used. While
exploring, certain visual beacons can be identified (objects like ceiling fans, switchboards, that
are easy to detect and are unlikely to change place). As these beacons are identified in the ECS
w.r.t. ECS origin (Fig. 16(a)), different copies of the map w.r.t. to different beacons as the
origins are computed (Fig. 16(b)) using coordinate geometry and stored. During navigation,
one/multiple of these beacons are in the environment and the distance to them is read from the
range image sensor, the respective maps are loaded and then shift to be w.r.t. NCS origin (Fig.
16(c)). Once this is done, all the position readings from the pose estimation sensor will be
absolute and the robot can know its position in the map.

18



5. IMPLEMENTATION

5.1 Environment Mapping

The method proposed in this project was implemented using Intel RealSense D435 depth camera
as the range imaging sensor and Intel RealSense T265 tracking camera as the visual odometry
sensor for pose estimation. The Intel RealSense SDK was used to interface with the sensors and
the method was implemented using Python.

The camera has a horizontal field of view of 86 degrees and is set to a resolution of 640x480
pixels at 30 frames per second. This results in the value of n being equal to 640. Substituting
these values in equation (2) makes the formula for 8, as

0, =43 % (320—-k)/320 3)
5.1.1 Thresholding

e At initialization, the sensor’s current position and angles are stored in a list which is
then appended to a list called prevList.

e  When the threshold function is called, the newer position and angle values are compared
with the last appended value of prevList.

e If the differences in horizontal/vertical movement is greater than 3.5cm or angle moved
is greater than 5 degrees, the threshold function returns true which results in the newer
position and angle values to be appended to prevList which will be used for further
iterations.

e If criteria are not met, then the function returns False which doesn’t update prevList.

5.1.2 Selective omission

start_p: Start Pixel is an integer number signifying the pixel no. from which calculations should
start from.

end_p: End Pixel signifies the pixel no. up to which calculations must take place.
Selective omission is implemented by limiting these values.

e This function takes two arguments, the g_angle (global Grand Angle) and the current
yaw of the camera. The g_angle is the previous yaw value of the camera and is
initialized to be 0.

e If g_angle is greater than yaw, it means that the camera was rotated in the CCW
direction. Hence, the pixel values are calculated from the LHS. This makes start_p =
0, because it is the first pixel from the LHS. To calculate end_p, the difference in angle
values is calculated. This difference is divided with the angle per pixel value which is

($)= 86/640 = 0.134. Therefore, the end_p can be calculated as (g_angle —

frame width

yaw)/0.134 and rounding it to the nearest integer number.
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e If g_angle islesser than yaw, it means that the camera was rotated in the CW direction.
Hence, the pixel values must be calculated from the RHS. This makes end_p = 640,
because it is the last pixel from the RHS. To calculate start, the difference in angle values
is calculated. This difference is divided with the angle per pixel value which is

(&) = 86/640 = 0.134. Therefore, an intermediate point inter_p can be
frame width

calculated as (g_angle — yaw)/0.134 and rounded to the nearest integer number. This
value indicates the pixel difference. Subtracting this value from 640, gives the value of
start_p

e Cases are added where the difference between g_angle and yaw is 0 in which case the
start_p is made 0 and end_p is made 640.

e Finally, the global g_angle is changed to be the current yaw. This value is used in
subsequent iterations

5.2 Exploration and Navigation

The proposed behaviours and FSM were implemented in MATLAB on the sim-I-am simulator
by GRITS Lab, Georgia tech. The simulator implements a differential drive robot that can be
controlled as per the unicycle model i.e. by providing inputs for linear and angular velocities.
The architecture of the simulator is as per Fig. 17

Simulator
(Clock)
=
Y
IR Supervisor Inputs Controller
Robot Ticks >
I (Execute) AL (Execute)
T
vel r vel |

Figure 17 - Simulator architecture

The behaviours and the switching logic (i.e. the FSM) were programmed in the supervisor
block. This simulator was use primarily used because it implements a similar IR based range
finding as is describe in the mapping section.
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5.2.1 Go to Goal Behaviour
The heading (angle), 8, , to the goal location (x4 y,) is calculated as follows.

1. Let u be the vector from the robot located at (x, ¥) to the goal located at (x4 y,) then
0, is the angle u makes with the x-axis (positive 8, is in the counter clockwise

direction). The vector u can be expressed in terms of its x-component, u,,, and its y-
component, u,,. These two components and the atan2 function are used to compute

the angle to the goal, 6

2. The error between Gg and the current heading of the robot, 8, is calculated as follows.
The error e k should represent the error between the heading to the goal 6, and the
current heading of the robot 8 . atan2 is used to keep the error between [, 7).

3. The proportional, integral, and derivative terms for the PID regulator that steers the
robot to the goal are calculated .The robot will drive at a constant linear velocity v,
but it is up to the PID regulator to steer the robot to the goal, i.e. compute the correct
angular velocity.

5.2.2 Avoid Obstacles Behaviour

The IR sensors allow us to measure the distance to obstacles in the environment, but we need
to compute the points in the world to which these distances correspond. Fig. 18 illustrates
these points with a black cross

Figure 18 - IR range to point a transformation
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The strategy for obstacle avoidance that we will use is as follows:
Transform the IR distances to points in the world.

Compute a vector to each point from the robot, u;, u,, . . ., uo.

Weigh each vector according to their importance, @, Uy, Uy, . . ., AgUo.
Sum the weighted vectors to form a single vector, uyp= a1uUq + . . . + AgUo.
Use this vector to compute a heading and steer the robot to this angle.

This strategy will steer the robot in a direction with the freest space (i.e., it is a direction away
from obstacles). For this strategy to work, three crucial parts need to be implemented:

Transform the IR distance measured by the sensor to a point in the reference frame of
the robot.

Transform the point in the robot’s reference frame to the world’s reference frame

Use the set of transformed points to compute a vector that points away from the obstacle.
The robot will steer in the direction of this vector and avoid the obstacle

5.2.3 Follow Walls Behaviour

1.

2.

First, a vector, ug,, ;, that estimates a section of the obstacle (“wall”) next to the robot
using the robot’s right (or left) FOV is constructed as shown in Fig. 19

Figure 19 - Generation of approximation of a wall

A vector, Uy, 5, that points from the robot to the closest point on uyy,; is computed

This vector is visualized as blue line in Fig. 19. and can be computed using a linear
algebra.

The two vectors are combined, such that it can be used as a heading vector for a PID
controller that will follow the wall to the right (or left) at some distance , df,.
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4. A progress made event is implemented that determines whether the robot is making any
progress towards the goal .This strategy is needed to realize that the robot is not making
any forward progress and switch to follow wall to navigate out of the obstacle. This
function returns true if

S| P

6. The sliding left and sliding right events are implemented, these serve as a criterion for
whether the robot should continue to follow the wall (left or right) or switch back to the
go-to-goal behaviour. While the lack of progress made will trigger the navigation
system into a follow wall behaviour, we need to check whether the robot should stay in
the wall following behaviour or switch back to go to goal. We can check whether we
need to be in the sliding mode (wall following) by testing if o; > 0 and 0, > 0 , where

[Ugtg Uao] [2] = Uy

5.2.4 Finite State Machine

1. If at_goal, then switch to stop.
2. If unsafe, then switch to state avoid_obstacles.
3. If in state go_to_goal and at obstacle, then check whether the robot needs to slide

left or slide right. If so set_progress_point, and switch to state follow_wall (with
inputs equal to right or left depending on the results of the sliding test).

4. If in state follow_wall, check whether progress_made and the robot does not need
to slide slide_left (or slide right depending on inputs). If so, switch to state
go_to_goal, otherwise keep following wall
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6. RESULTS AND DISCUSSION

The results generated by implementing the said method using the sensors mentioned earlier are
discussed in this section and are compared with various versions of the method.

6.1 Environment Mapping

T . T 1
[ ) ()

.

Figure 21 - Region Mapped by robot while exploring in a simulation (Marked in blue)
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Fig. 20 demonstrates a map generated by the method proposed in this synopsis in blue. The black
overlay represents a very approximate blueprint of the controlled environment, a room. The
results show that the method performs well in areas with optimum lighting conditions. The dotted
line outside the stacked boundary shows the extent of the overshoot, i.e. the points generated by
the method that are further away from the origin than expected.

Although it seems like the generated output (Fig. 20 Blue Region) is not as perfect as the
blueprint (Fig. 20 Black Region) itself, one must take into consideration the objects in the room.
All the jagged edges and discontinuities observed are generated due to obstacles and objects
present in the room. As the aim of the method is to generate a knowledge base, that is, a map
that can be used to navigate the environment. It is not practical to ignore these discontinuities
as that might lead to omission of certain obstacles in the environment.

Fig. 21 shows the region potentially mapped by a robot in a simulation after one iteration of
moving from start to goal position. The information collected by multiple iterations will be
accumulated to form a knowledge base which can be used in the future for navigating
efficiently.
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6.2 Exploration and Navigation

JnaL L

Figure 22 - Robot Starts from Initial Position Figure 23 — Robot successfully exits the non convex
obstacle

Figure 24 — Robot successfully navigates around the Figure 25 — Robot has reached the goal
obstacle towards the goal

The algorithm for navigating has been implement and tested in the most complex environment
as defined in section 4.2 i.e. a labyrinth. The results generated in the simulated environment
show that the robot can successfully negotiate the environment without slamming into any
obstacles. This result is satisfactory for demonstrating that the algorithm works and can be
implemented on a physical robot for further testing and validation in the real world.
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7. CONSTRAINTS AND LIMITATIONS

Lighting Conditions - The method performs well under moderate lighting conditions,
extreme differences in exposure can result in discontinuities in the output generated by the
method

Vibrations — The method is not capable of handling vibrations that affect the data while it
is captured by the sensor. A stable hardware platform is required in order to achieve optimal
results.

Distortions — The method relies on the sensor used to capture data for distortion correction.
Pincushion distortions on the extreme ends of the depth frame were observed. Hence,
distortion correction must be applied to the frame before being used.
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8. CONCLUSION

This project proposes a dynamic and novel system for indoor navigation using range imaging
and visual simultaneous localisation and mapping (V-SLAM). The system proposed is capable
of autonomously exploring an indoor environment while mapping and tracking obstacles in real
time. The system is also capable of navigating a previously explored environment by generating
waypoints and optimising path.

This report discusses the efficacy of the system proposed and provides results generated by
implementing the system in a controlled environment.

The results generated show that the proposed system can be used in real-life scenarios and is
able to generate a fairly accurate map of the environment while exploring the environment in
the test case while still having a scope for further development.
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9. FUTURE SCOPE

e Exposure Correction — While imaging, if there is an area in the image which is
overexposed or underexposed it will cause an error in the ranging data. Thus, a processing
technique is required that eliminates this error by either normalizing the exposed area or
ignoring the exposed region entirely.

e Selective Removal of Pixels — Manually or automatically pass range of values between
which no mapping is generated. The benefit of this feature is the fact that, if there is a
requirement to ignore certain ranges of pixels, then they must be eliminated despite
meeting any prior mapping criteria.

e Extended Awareness - Within the generated pointset, we must be able to determine not
only the existence of a potential obstacle and localize it within the environment but also
classify and assign a weight to it based on the probability that the object is likely to move
making its localization in the environment volatile. E.g. Small furniture like chairs have a
non-trivial probability of changing their position in a room whereas storage cabinets are
unlikely to move in the short run. This can be used to be aware of humans in the
environment and safely operate alongside them without posing as a threat.

e Implementation of Region Segmentation — To optimize navigation, waypoints can be
generated which act as sequential goal states. Segmented regions can provide a framework
to generate waypoints.

Figure 26 - Region Segmentation
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